Search This Blog

Monday, 23 September 2013


Within our own galaxy, molecular gas clouds accounts for less than one percent of the volume of the interstellar medium (ISM), yet it is also the densest part of the medium comprising roughly one-half of the total gas mass interior to the Sun's galactic orbit. The bulk of the molecular gas is contained in a ring between 3.5 and 7.5 kiloparsecs (11,000 and 24,000 ly) from the center of the galaxy (the Sun is about 8.5 kpc from the center).Large scale carbon monoxide maps of the galaxy show that the position of this gas correlates with the spiral arms of the galaxy.That molecular gas occurs predominantly in the spiral arms suggests that molecular clouds must form and dissociate on a timescale shorter than 10 million years—the time it takes for material to pass through the arm region.
Vertically to the plane of the galaxy, the molecular gas inhabits the narrow midplane of the Galactic disc with a characteristic scale height, Z, of approximately 50–75 parsec, much thinner than the warm atomic (Z=130–400 pc) and warm ionized (Z=1000 pc) gaseous components of the ISM.The exception to the ionized gas distribution are HII regions which are bubbles of hot ionized gas created in molecular clouds by the intense radiation given off by young massive stars and as such they have approximately the same vertical distribution as the molecular gas.
This distribution of molecular gas is averaged out over large distances; however, the small scale distribution of the gas is highly irregular with most of it concentrated in discrete clouds and cloud complexes.

No comments:

Post a Comment